0=4.9t^2-3.59t+.125

Simple and best practice solution for 0=4.9t^2-3.59t+.125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=4.9t^2-3.59t+.125 equation:



0=4.9t^2-3.59t+.125
We move all terms to the left:
0-(4.9t^2-3.59t+.125)=0
We add all the numbers together, and all the variables
-(4.9t^2-3.59t+.125)=0
We get rid of parentheses
-4.9t^2+3.59t-.125=0
We add all the numbers together, and all the variables
-4.9t^2+3.59t-0.125=0
a = -4.9; b = 3.59; c = -0.125;
Δ = b2-4ac
Δ = 3.592-4·(-4.9)·(-0.125)
Δ = 10.4381
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3.59)-\sqrt{10.4381}}{2*-4.9}=\frac{-3.59-\sqrt{10.4381}}{-9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3.59)+\sqrt{10.4381}}{2*-4.9}=\frac{-3.59+\sqrt{10.4381}}{-9.8} $

See similar equations:

| 70=p/7+7 | | 4=k/3+1 | | 4y+2=-20 | | 1/3/2/7=14/3/x | | 10=7−m.m= | | 2+10x=72 | | -16-3r=-r-8(-7r+2) | | -14=6m+10 | | -15=3x-2x | | 31​ (2b+9)=32​ (b+29​ ) | | -7(5-6n)-3=32+7n | | 1/32/7=42/3x | | 8(4+5n)=-4+4n | | -122=4(1-5m)-6 | | 6x-15=100 | | 4x+20=(4x+6)+(4x+6) | | 2x/5-9=-7 | | -5=-7+x/2 | | 8(x-5)=3x+5 | | -36-6x=7(1-7x) | | -0.75+x=-2.5 | | -4-2(5x-4)=14-8x | | 3x+5x-10=x | | 10-2x=4+4x | | 5m-4m=-3 | | -(7-7x)=8x=83 | | 0.5x0.4=0.2. | | 1x-2=-1+2x-4-1 | | -(k-7)=k+7 | | 8-8b=-6b | | -124=-8m-4 | | 15=10-x/0.4 |

Equations solver categories